• 1 Post
  • 53 Comments
Joined 1 year ago
cake
Cake day: July 9th, 2023

help-circle


  • This ignores the first part of my response - if I, as a legitimate user, might get caught up in one of these trees, either by mistakenly approving a bot, or approving a user who approves a bot, and I risk losing my account if this happens, what is my incentive to approve anyone?

    Additionally, let’s assume I’m a really dumb bot creator, and I keep all of my bots in the same tree. I don’t bother to maintain a few legitimate accounts, and I don’t bother to have random users approve some of the bots. If my entire tree gets nuked, it’s still only a few weeks until I’m back at full force.

    With a very slightly smarter bot creator, you also won’t have a nice tree:

    As a new user looking for an approver, how do I know I’m not requesting (or otherwise getting) approved by a bot? To appear legitimate, they would be incentivized to approve legitimate users, in addition to bots.

    A reasonably intelligent bot creator would have several accounts they directly control and use legitimately (this keeps their foot in the door), would mix reaching out to random users for approval with having bots approve bots, and would approve legitimate users in addition to bots. The tree ends up as much more of a tangled graph.


  • This ignores the first part of my response - if I, as a legitimate user, might get caught up in one of these trees, either by mistakenly approving a bot, or approving a user who approves a bot, and I risk losing my account if this happens, what is my incentive to approve anyone?

    Additionally, let’s assume I’m a really dumb bot creator, and I keep all of my bots in the same tree. I don’t bother to maintain a few legitimate accounts, and I don’t bother to have random users approve some of the bots. If my entire tree gets nuked, it’s still only a few weeks until I’m back at full force.

    With a very slightly smarter bot creator, you also won’t have a nice tree:

    As a new user looking for an approver, how do I know I’m not requesting (or otherwise getting) approved by a bot? To appear legitimate, they would be incentivized to approve legitimate users, in addition to bots.

    A reasonably intelligent bot creator would have several accounts they directly control and use legitimately (this keeps their foot in the door), would mix reaching out to random users for approval with having bots approve bots, and would approve legitimate users in addition to bots. The tree ends up as much more of a tangled graph.


  • I think this would be too limiting for humans, and not effective for bots.

    As a human, unless you know the person in real life, what’s the incentive to approve them, if there’s a chance you could be banned for their bad behavior?

    As a bot creator, you can still achieve exponential growth - every time you create a new bot, you have a new approver, so you go from 1 -> 2 -> 4 -> 8. Even if, on average, you had to wait a week between approvals, in 25 weeks (less that half a year), you could have over 33 million accounts. Even if you play it safe, and don’t generate/approve the maximal accounts every week, you’d still have hundreds of thousands to millions in a matter of weeks.



  • My first thought was similar - there might be some hardware acceleration happening for the jpgs that isn’t for the other formats, resulting in a CPU bottleneck. A modern harddrive over USB3.0 should be capable of hundreds of megabits to several gigabits per second. It seems unlikely that’s your bottleneck (though you can feel free to share stats and correct the assumption if this is incorrect - if your pngs are in the 40 megabyte range, your 3.5 per second would be pretty taxing).

    If you are seeing only 1 CPU core at 100%, perhaps you could split the video clip, and process multiple clips in parallel?


  • it doesn’t unravel the underlying complexity of what it does… these alternative syntaxes tend to make some easy cases easy, but they have no idea what to do with more complicated cases

    This can be said of any higher-level language, or API. There is always a cost to abstraction. Binary -> Assembly -> C -> Python. As you go up that chain, many things get easier, but some things become impossible. You always have the option to drop down, though, and these regex tools are no different. Software development, sysops, devops, etc are full of compromises like this.


  • You are conflating the concept and the implementation. PFS is a feature of network protocols, and they are a frequently cited example, but they are not part of the definition. From your second link, the definition is:

    Perfect forward secrecy (PFS for short) refers to the property of key-exchange protocols (Key Exchange) by which the exposure of long-term keying material, used in the protocol to authenticate and negotiate session keys, does not compromise the secrecy of session keys established before the exposure.

    And your third link:

    Forward secrecy (FS): a key management scheme ensures forward secrecy if an adversary that corrupts (by a node compromise) a set of keys at some generations j and prior to generation i, where 1 ≤ j < i, is not able to use these keys to compute a usable key at a generation k where k ≥ i.

    Neither of these mention networks, only protocols/schemes, which are concepts. Cryptography exists outside networks, and outside computer science (even if that is where it finds the most use).

    Funnily enough, these two definitions (which I’ll remind you, come from the links you provided) are directly contradictory. The first describes protecting information “before the exposure” (i.e. past messages), while the second says a compromise at j cannot be used to compromise k, where k is strictly greater than j (i.e. a future message). So much for the hard and fast definition from “professional cryptographers.”

    Now, what you’ve described with matrix sounds like it is having a client send old messages to the server, which are then sent to another client. The fact the content is old is irrelevant - the content is sent in new messages, using new sessions, with new keys. This is different from what I described, about a new client downloading old messages (encrypted with the original key) from the server. In any case, both of these scenarios create an attack vector through which an adversary can get all of your old messages, which, whether you believe violates PFS by your chosen definition or not, does defeat its purpose (perhaps you prefer this phrasing to “break” or “breach”).

    This seems to align with what you said in your first response, that Signal’s goal is to “limit privacy leaks,” which I agree with. I’m not sure why we’ve gotten so hung up on semantics.

    I wasn’t going to address this, but since you brought it up twice, running a forum is not much of a credential. Anyone can start a forum. There are forums for vaxxers and forums for antivaxxers, forums for atheists and forums for believers, forums for vegans and forums for carnivores. Not everyone running these forums is an expert, and necessarily, not all of them are “right.” This isn’t to say you don’t have any knowledge of the subject matter, only that running a forum isn’t proof you do.

    If you’d like to reply, you may have the last word.









  • This is not entirely correct. Messages are stored on their servers temporarily (last I saw, for up to 30 days), so that even if your device is offline for a while, you still get all your messages.

    In theory, you could have messages waiting in your queue for device A, when you add device B, but device B will still not get the messages, even though the encrypted message is still on their servers.

    This is because messages are encrypted per device, rather than per user. So if you have a friend who uses a phone and computer, and you also use a phone and computer, the client sending the message encrypts it three times, and sends each encrypted copy to the server. Each client then pulls its copy, and decrypts it. If a device does not exist when the message is encrypted and sent, it is never encrypted for that device, so that new device cannot pull the message down and decrypt it.

    For more details: https://signal.org/docs/specifications/sesame/



  • This kind of reminds me of Crispin Glover, from Back to the Future. He tried to negotiate a higher pay for the second movie, so the producers hired a different actor to play the role, but deliberately made the actor up to look like Glover. In response, Glover sued the producers and won. It set a critical precedent for Hollywood, about using someone’s likeness without consent.

    The article mentions they reached out to her two days before the launch - if she had said ‘OK,’ there’s no way they could have even recorded what they needed from her, let alone trained the model in time for the presentation. So they must have had a Scarlett Johansson voice ready to go. Other than training the model on movies (really not ideal for a high quality voice model), how would they have gotten the recordings they needed?

    If they hired a “random” voice actress, they might not run into issues. But if at any point they had a job listing, a discussion with a talent manager, or anything else where they mentioned wanting a “Scarlett Johansson sound-alike,” they might have dug themselves a nice hole here.

    Specifically regarding your question about hiring a voice actor that sounds like someone else - this is commonly done to replace people for cartoons. I don’t think it’s an issue if you are playing a character. But if you deliberately impersonate a person, there might be some trouble.


  • Considering that you are not using their software, was the laptop worth the premium you paid for it, vs buying from Clevo directly?

    I figured the hardware and software coming from the same vendor would yield the best results, and wanted to support a company that supports right-to-repair, and Linux in general. But ultimately I found Pop!_OS buggy and had performance issues, so I’m not using their OS, and their firmware is causing issues with my SSD, so I’d like to be off of it as well (but was told "there’s no process for reverting to the proprietary firmware“ for the specific model I have). I could have bought a Clevo directly, saving hundreds of dollars, and probably had a better working machine.